Abstract

Ecological theory predicts that animal movement is shaped by its efficiency of resource acquisition. Focusing solely on efficiency, however, ignores the fact that animal activity can affect resource availability and distribution. Here, we show that feedback between individual behavior and environmental complexity can explain movement strategies in mussels. Specifically, experiments show that mussels use a Lévy walk during the formation of spatially patterned beds, and models reveal that this Lévy movement accelerates pattern formation. The emergent patterning in mussel beds, in turn, improves individual fitness. These results suggest that Lévy walks evolved as a result of the selective advantage conferred by autonomously generated, emergent spatial patterns in mussel beds. Our results emphasize that an interaction between individual selection and habitat complexity shapes animal movement in natural systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.