Abstract

Phonon transport in square-cross-sectionnanowires is studied using spectral Monte Carlo simulations. Our results show the evolution of the different transport regimes described by Lévy statistics as a function of the surface roughness-to-thermal wavelength ratio σ/λ. More precisely, the relationship between the Lévy index γ describing the mean free path distribution Ψ(Λ) and σ/λ is established for the classical diffusive regime, the superdiffusive regime, and the ballistic regime in the nanowire. Besides the conventional superdiffusive regime that is marked by Ψ(Λ) with a single heavy-tailed peak, we reveal an unconventional superdiffusive subregime featuring Ψ(Λ) with sawtooth oscillations when σ/λ∼0.01. Investigation of the direction of propagation of phonons shows a significant narrowing of the angular distribution around the long axis of the nanowire due to the diffuse scattering at rough boundaries when σ/λ>0.1. These results shed light on the transport mechanisms of quasiballistic phonons and will help in nanowire design for specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.