Abstract
While swarming behavior is regarded as a critical phenomenon in phase transition and frequently shows the properties of a critical state such as Lévy walk, a general mechanism to explain the critical property in swarming behavior has not yet been found. Here, we address this problem with a simple swarm model, the Self-Propelled Particle (SPP) model, and propose a way to explain this critical behavior by introducing agents making decisions via the data-hypothesis interaction in Bayesian inference, namely, Bayesian and inverse Bayesian inference (BIB). We compare three SPP models, namely, the simple SPP, the SPP with Bayesian-only inference (BO) and the SPP with BIB models. We show that only the BIB model entails coexisting tornado, splash and translation behaviors, and the Lévy walk pattern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Structural Biotechnology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.