Abstract

The precise mathematical description of gaze patterns remains a topic of ongoing debate, impacting the practical analysis of eye-tracking data. In this context, we present evidence supporting the appropriateness of a Lévy flight description for eye-gaze trajectories, emphasizing its beneficial scale-invariant properties. Our study focuses on utilizing these properties to aid in diagnosing Attention-Deficit and Hyperactivity Disorder (ADHD) in children, in conjunction with standard cognitive tests. Using this method, we found that the distribution of the characteristic exponent of Lévy flights statistically is different in children with ADHD. Furthermore, we observed that these children deviate from a strategy that is considered optimal for searching processes, in contrast to non-ADHD children. We focused on the case where both eye-tracking data and data from a cognitive test are present and show that the study of gaze patterns in children with ADHD can help in identifying this condition. Since eye-tracking data can be gathered during cognitive tests without needing extra time-consuming specific tasks, we argue that it is in a prime position to provide assistance in the arduous task of diagnosing ADHD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call