Abstract

The goal of this paper is to construct canonical Lévy area processes for Banach space valued Brownian motions via dyadic approximations. The significance of the existence of canonical Lévy area processes is that a (stochastic) integration theory can be established for such Brownian motions (in Banach spaces). Existence of flows for stochastic differential equations with infinite dimensional noise then follows via the results of Lyons and Lyons and Qian. This investigation involves a careful analysis on the choice of tensor norms, motivated by the applications to infinite dimensional stochastic differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.