Abstract
Abstract In this paper, we establish Luzin's condition (N) for mappings in certain Sobolev–Orlicz spaces with certain moduli of continuity. Further, given a mapping in these Sobolev–Orlicz spaces, we give bounds on the size of the exceptional set where Luzin's condition (N) may fail. If a mapping violates Luzin's condition (N), we show that there is a Cantor set of measure zero that is mapped to a set of positive measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.