Abstract

BackgroundDNA methylation is commonly measured using bisulfite sequencing (BS-seq). The quality of a BS-seq library is measured by its bisulfite conversion efficiency. Libraries with low conversion rates are typically excluded from analysis resulting in reduced coverage and increased costs.ResultsWe have developed a probabilistic method and software, LuxRep, that implements a general linear model and simultaneously accounts for technical replicates (libraries from the same biological sample) from different bisulfite-converted DNA libraries. Using simulations and actual DNA methylation data, we show that including technical replicates with low bisulfite conversion rates generates more accurate estimates of methylation levels and differentially methylated sites. Moreover, using variational inference speeds up computation time necessary for whole genome analysis.ConclusionsIn this work we show that taking into account technical replicates (i.e. libraries) of BS-seq data of varying bisulfite conversion rates, with their corresponding experimental parameters, improves methylation level estimation and differential methylation detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.