Abstract

Electron transport through a single-level quantum dot weakly coupled to Luttinger liquid leads is considered in the master equation approach. It is shown that for a weak or moderately strong interaction the differential conductance demonstrates resonant-like behavior as a function of bias and gate voltages. The inelastic channels associated with vibron-assisted electron tunneling can even dominate electron transport for a certain region of interaction strength. In the limit of strong interaction resonant behavior disappears and the differential conductance scales as a power law in temperature (linear regime) or in bias voltage (nonlinear regime).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call