Abstract

While luteolin, a flavone rich in many plants, has some cardiovascular activity, it is not clear whether luteolin has beneficial effects on the vascular endothelial impairment in hyperglycemia/high glucose. Here, we reveal the protective effect of luteolin on endothelium-dependent relaxation in isolated rat aortic rings exposed to high glucose. The thoracic aorta of male Sprague–Dawley rats was rapidly dissected out and the effect of luteolin on the tension of aortic rings pretreated with high glucose (44 mM) for 4 h was measured in an organ bath system. The levels of nitric oxide (NO), hydroxy radical (OH − ) and reactive oxygen species (ROS), and the activity of superoxide dismutase (SOD) and nitric oxide synthase (NOS) were measured in aortas. The vasorelaxation after treatment with luteolin for 8 weeks in aortic rings from diabetic rats was also determined. We found that exposure to high glucose decreased acetylcholine-induced endothelium-dependent relaxation. However, high mannitol had no effect on vasorelaxation. Luteolin evoked a concentration-dependent relaxation in aortic rings previously contracted by phenylephrine, and the pD 2 value was 5.24 ± 0.04. The EC 50 of luteolin markedly attenuated the inhibition of relaxation induced by high glucose, which was significantly weakened by pretreatment with l-NAME (0.1 mM), but not by indomethacin (0.01 mM). Luteolin significantly inhibited the increase of ROS level and OH − formation, and the decrease of NO level, NOS and SOD activity caused by high glucose. The improving effect of luteolin on endothelium-dependent vasorelaxation in diabetic rat aortic rings was reversed by pretreatment with l-NAME or methylene blue. The results indicate that the decrease of endothelium-dependent relaxation in rat aortic rings exposed to high glucose is markedly attenuated by luteolin, which may be mediated by reducing oxidative stress and enhancing activity in the NOS–NO pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.