Abstract

The present study investigated the effect and possible mechanism of luteolin, a food-derived flavonoid, on endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes). Luteolin inhibited the release of glutamate evoked by the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was concentration-dependent. The effect of luteolin on the evoked glutamate release was prevented by the chelation of the extracellular Ca(2+) ions and by the vesicular transporter inhibitor, but was insensitive to the glutamate transporter inhibitor. Luteolin decreased the 4-AP-induced increase in [Ca(2+)](C), whereas it did not alter 4-AP-mediated depolarization. Furthermore, the effect of luteolin on evoked glutamate release was abolished by blocking the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channels, but not by blocking the ryanodine receptors or the mitochondrial Na(+)/Ca(2+) exchange. In addition, the inhibitory effect of luteolin on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase (MEK) inhibitors. Western blot analyses showed that luteolin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK. Thus, it was concluded that luteolin inhibits glutamate release from rat cortical synaptosomes through the suppression of presynaptic voltage-dependent Ca(2+) entry and MEK/ERK signaling cascade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call