Abstract

Obesity is associated with a series of skeletal muscle impairments and dysfunctions, which are characterized by metabolic disturbances and muscle atrophy. Luteolin is a phenolic phytochemical with broad pharmacological activities. The present study aimed to evaluate the protective effects of Luteolin on muscle function and explore the potential mechanisms in high-fat diet (HFD)-induced obese rats and palmitic acid (PA)-treated C2C12 myotubes. Male Sprague-Dawley (SD) rats were fed with a control diet or HFD and orally administrated 0.5% sodium carboxymethyl cellulose (vehicle) or Luteolin (25, 50 and 100 mg/kg, respectively) for 12 weeks. The results showed that Luteolin ameliorated HFD-induced body weight gain, glucose intolerance and hyperlipidemia. Luteolin also alleviated muscle atrophy, decreased ectopic lipid deposition and prompted muscle-fiber-type conversion in the skeletal muscle. Meanwhile, we observed an evident improvement in mitochondrial quality control and respiratory capacity, accompanied by reduced oxidative stress. Mechanistic studies indicated that AMPK/SIRT1/PGC-1α signaling pathway plays a key role in the protective effects of Luteolin on skeletal muscle in the obese states, which was further verified by using specific inhibitors of AMPK and SIRT1. Moreover, the mRNA expression levels of markers in brown adipocyte formation were significantly up-regulated post Luteolin supplementation in different adipose depots. Taken together, these results revealed that Luteolin supplementation might be a promising strategy to prevent obesity-induced loss of mass and biological dysfunctions of skeletal muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.