Abstract

BackgroundEndocrine mechanisms governing canine reproductive function remain still obscure. Progesterone (P4) of luteal origin is required for maintenance of pregnancy. Corpora lutea (CL) are gonadotrop-independent during the first third of dioestrus; afterwards prolactin (PRL) is the primary luteotropic factor. Interestingly, the increasing PRL levels are accompanied by decreasing P4 concentrations, thus luteal regression/luteolysis occurs in spite of an increased availability of gonadotropic support. PRL acts through its receptor (PRLr), the expression of which has not yet been thoroughly investigated at the molecular and cellular level in the dog.MethodsThe expression of PRLr was assessed in CL of non-pregnant dogs during the course of dioestrus (days 5, 15, 25, 35, 45, 65 post ovulation; p.o.) as well as in CL, the utero/placental compartments (Ut/Pl) and interplacental free polar zones (interplacental sites) from pregnant dogs during the pre-implantation, post-implantation and mid-gestation period of pregnancy and during the normal and antigestagen-induced luteolysis. Expression of PRLr was tested by Real Time PCR, immunohistochemistry and in situ hybridization.ResultsIn non-pregnant CL the PRLr expression was significantly upregulated at day 15 p.o. and decreased significantly afterwards, towards the end of dioestrus. CL of pregnancy showed elevated PRLr expression until mid gestation while prepartal downregulation was observed. Interestingly, placental but not interplacental expression of PRLr was strongly time-related; a significant upregulation was observed towards mid-gestation. Within the CL PRLr was localized to the luteal cells; in the Ut/Pl it was localized to the fetal trophoblast and epithelial cells of glandular chambers. Moreover, in mid-pregnant animals treated with an antigestagen, both the luteal and placental, but not the uterine PRLr were significantly downregulated.ConclusionsThe data presented suggest that the luteal provision of P4 in both pregnant and non-pregnant dogs may be regulated at the PRLr level. Furthermore, a role of PRL not only in maintaining the canine CL function but also in regulating the placental function is strongly suggested. A possible functional interrelationship between luteal P4 and placental and luteal PRLr expression also with respect to the prepartal luteolysis is implied.

Highlights

  • Endocrine mechanisms governing canine reproductive function remain still obscure

  • Cloning and sequencing of canine PRL acts through its receptor (PRLr)-cDNA were a prerequisite before investigating its expression pattern in canine reproductive tissues

  • Expression of PRLr mRNA and protein was detected in Corpora lutea (CL) of pregnant and non-pregnant dogs at all time points examined

Read more

Summary

Introduction

Endocrine mechanisms governing canine reproductive function remain still obscure. Progesterone (P4) of luteal origin is required for maintenance of pregnancy. The increasing PRL levels are accompanied by decreasing P4 concentrations, luteal regression/luteolysis occurs in spite of an increased availability of gonadotropic support. Afterwards, progesterone levels start to decrease gradually until approximately day 60 of the luteal life-span when a steep prepartal progesterone decline is observed in pregnant animals (prepartal luteolysis) as a prerequisite for parturition [3]. The prepartal progesterone decline coincides with an increase in PGF2a levels in maternal blood [3]. This seems to originate from the dramatically increased expression of cyclooxygenase 2 (COX2) in the fetal trophoblast [8] and strongly implies a functional role of PGF2a in relation to the onset of parturition [3]. The observation that antigestagen-mediated blocking of progesterone receptors results in the activation of an endocrine cascade within the luteal and placental prostaglandin system similar to that observed during normal prepartal luteolysis further supports this hypothesis [8,9]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call