Abstract

BackgroundWhen seeking a human for a blood meal, mosquitoes use several cues to detect and find their hosts. From this knowledge, counter-flow odour-baited traps have been developed that use a combination of CO2, human-mimicking odour, visual cues and circulating airflow to attract and capture mosquitoes. Initially developed for monitoring, these traps are now also being considered as promising vector control tools. The traps are attractive to host-seeking mosquitoes, but their capture efficiency is low. It has been hypothesized that the lack of short-range host cues, such as heat and increased local humidity, often prevent mosquitoes from getting close enough to get caught; this lack might even trigger avoidance manoeuvres near the capture region.MethodsThis study investigated how close-range host cues affect the flight behaviour of Anopheles female malaria mosquitoes around odour-baited traps, and how this affects trap capture performance. For this, a novel counter-flow odour-baited trap was developed, the M-Tego. In addition to the usual CO2 and odour-blend, this trap can provide the short-range host cues, heat and humidity. Systematically adding or removing these two cues tested how this affected the trap capture percentages and flight behaviour. First, capture percentages of the M-Tego with and without short-range host cues to the BG-Suna trap were compared, in both laboratory and semi-field testing. Then, machine-vision techniques were used to track the three-dimensional flight movements of mosquitoes around the M-Tego.ResultsWith heat and humidity present, the M-Tego captured significantly more mosquitoes as capture percentages almost doubled. Comparing the flight behaviour around the M-Tego with variable close-range host cues showed that when these cues were present, flying mosquitoes were more attracted to the trap and spent more time there. In addition, the M-Tego was found to have a better capture mechanism than the BG-Suna, most likely because it does not elicit previously observed upward avoiding manoeuvres.ConclusionsResults suggest that adding heat and humidity to an odour-baited trap lures more mosquitoes close to the trap and retains them there longer, resulting in higher capture performance. These findings support the development of control tools for fighting mosquito-borne diseases such as malaria.

Highlights

  • When seeking a human for a blood meal, mosquitoes use several cues to detect and find their hosts

  • In the context of the recent worldwide slowdown of decrease in malaria cases, which is thought to be partly induced by the increasing mosquito resistance against widely used insecticides [1], such novel insecticide-free vector control tools are a promising alternative

  • Capture efficiency of the traps A total of 39 dual-choice trials were performed in the laboratory (Fig. 1a) and 907 female mosquitoes were caught by the traps, for a total of 1950 released mosquitoes

Read more

Summary

Introduction

When seeking a human for a blood meal, mosquitoes use several cues to detect and find their hosts From this knowledge, counter-flow odour-baited traps have been developed that use a combination of C­ O2, human-mimicking odour, visual cues and circulating airflow to attract and capture mosquitoes. Mosquitoes inspect visually contrasting objects and initialize landing in the presence of short-range host cues, such as heat or increased local humidity [3, 7,8,9,10,11,12,13] Based on this knowledge on mosquito host-seeking behaviour, odour-baited traps have been developed [14,15,16]. In the context of the recent worldwide slowdown of decrease in malaria cases, which is thought to be partly induced by the increasing mosquito resistance against widely used insecticides [1], such novel insecticide-free vector control tools are a promising alternative

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.