Abstract
Modifications of both DNA and protein by methylation are key factors in normal T and B cell immune responses as well as in the development of autoimmune disease. For example, the failure to maintain the methylation status of CpG dinucleotides in DNA triggers T cell autoreactivity. Methylated proteins are known targets of autoimmunity, including the symmetrical dimethylarginine residues of SmD1 and SmD3 in SLE. Herein, we demonstrate that altering the metabolism of S-adenosylmethionine (SAM), the major methyl donor for transmethylation reactions, can suppress T cell immunity. A by-product of SAM metabolism, 5′-deoxy-5′-methylthioadenosine (MTA), and an indirect inhibitor of methyltransferases, inhibits T cell responses including T cell activation markers, Th1/Th2 cytokines and TCR-related signaling events. Moreover, treatment of the lupus-prone MRL/lpr mouse with MTA markedly ameliorates splenomegaly, lymphadenopathy, autoantibody titers as well as IgG deposition and cellular infiltration in the kidney. Incubation of cells with SAM, which increases intracellular MTA levels, inhibits both TCR-mediated T cell proliferation and BCR (anti-IgM)-triggered B cell proliferation in a dose-dependent manner. These studies define the central role of MTA and SAM in immune responses and provide a simple approach to altering lymphocyte transmethylation and T cell mediated autoimmune syndromes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.