Abstract
Lung auscultation is essential for early lung condition detection. Categorizing adventitious lung sounds requires expert discrimination by medical specialists. This paper details the features of LungNeXt, a novel classification model specifically designed for lung sound analysis. Furthermore, we propose two auxiliary methods: RandClipMix (RCM) for data augmentation and Enhanced Mel-Spectrogram for Feature Extraction (EMFE). RCM addresses the issue of data imbalance by randomly mixing clips within the same category to create new adventitious lung sounds. EMFE augments specific frequency bands in spectrograms to highlight adventitious features. These contributions enable LungNeXt to achieve outstanding performance. LungNeXt optimally integrates an appropriate number of NeXtblocks, ensuring superior performance and a lightweight model architecture. The proposed RCM and EMFE methods, along with the LungNeXt classification network, have been evaluated on the SPRSound dataset. Experimental results revealed a commendable score of 0.5699 for the lung sound five-category task on SPRSound. Specifically, the LungNeXt model is characterized by its efficiency, with only 3.804M parameters and a computational complexity of 0.659G FLOPS. This lightweight and efficient model is particularly well-suited for applications in electronic stethoscope back-end processing equipment, providing efficient diagnostic advice to physicians and patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of King Saud University - Computer and Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.