Abstract
In acute respiratory distress syndrome, mechanical ventilation often induces alveolar overdistension aggravating the primary insult. To examine the mechanism of overdistension, surfactant-deficient immature rabbits were anesthetized with pentobarbital sodium, and their lungs were treated with serum-diluted modified natural surfactant (porcine lung extract; 2 mg/ml, 10 ml/kg). By mechanical ventilation with a peak inspiration pressure of 22.5 cm H2O, the animals had a tidal volume of 14.7 ml/kg (mean), when 2.5 cm H2O positive end-expiratory pressure was added. This volume was similar to that in animals treated with nondiluted modified natural surfactant (24 mg/ml in Ringer solution, 10 ml/kg). However, the lungs fixed at 10 cm H2O on the deflation limbs of the pressure-volume curve had the largest alveolar/alveolar duct profiles (> or =48,000 microm2), accounting for 38% of the terminal air spaces, and the smallest (<6,000 microm2), accounting for 31%. These values were higher than those in animals treated with nondiluted modified natural surfactant (P <0.05). We conclude that administration of serum-diluted surfactant to immature neonatal lungs leads to patchy overdistension of terminal air spaces, similar to the expansion pattern that may be seen after dilution of endogenous surfactant with proteinaceous edema fluid in acute respiratory distress syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.