Abstract

Chest X-ray is a radiological clinical assessment tool that has been commonly used to detect different types of lung diseases, such as lung tumors. In this paper, we use the Segmentation-based Deep Fusion Networks and Squeeze and Excitation blocks for model training. The proposed approach uses both wholes and cropped lung X-ray images and adds an attention mechanism to address the problems encountered during lesion identification, such as image misalignments, possible false positives from irrelevant objects, and the loss of small objects after image resizing. Two CNNs are used for feature extraction, and the extracted features are stitched together to form the final output, which is used to determine the presence of lung tumors in the image. Unlike previous methods which identify lesion heatmaps from X-ray images, we use the Semantic Segmentation via Gradient-Weighted Class Activation Mapping (Seg-Grad-CAM) to add semantic data for improved lung tumor localization. Experimental results show that our method achieves 98.51% accuracy and 99.01% sensitivity for classifying chest X-ray images with and without lung tumors. Furthermore, we combine the Seg-Grad-CAM and semantic segmentation for feature visualization. Experimental results show that the proposed approach achieves better results than previous methods that use weakly supervised learning for localization. The method proposed in this paper reduces the errors caused by subjective differences among radiologists, improves the efficiency of image interpretation and facilitates the making of correct treatment decisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.