Abstract

A three-compartment model predicting the recovery of aerosol boli (i.e., the ratio of the number of particles expired to the number inspired) as a function of breath-holding time and bolus penetration was fitted to experimental data measured in nine isolated dog lungs. For each lung, the diameters of alveoli and alveolar ducts, as well as the volume fractions of alveoli, alveolar ducts, and airways, were determined as parameters providing the best fit. Parameter values were alveolar diameter = 0.116 +/- 0.007 (SE) mm, alveolar duct diameter = 0.284 +/- 0.015 mm, total alveolar volume/total lung capacity (TLC) = 0.68 +/- 0.02, total alveolar duct volume/TLC = 0.24 +/- 0.02, and total airway volume/TLC = 0.09 +/- 0.01. These values agreed with published values for linear dimensions and volumetric fractions in the canine lung. The mean alveolar diameter determined by the model in the nine lungs agreed closely with a mean value of 0.115 +/- 0.002 mm determined by morphometric analysis of photographs of the subpleural alveoli in the same lungs. The procedure of fitting the model to experimental data appears to have promise as a noninvasive probe of the lung periphery. However, aerosol-derived dimensions were more variable than morphometric ones, possibly because of interlung differences in aerosol distribution not accounted for in the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.