Abstract

Regulatory T cells (Tregs) decrease in the adipose tissue upon weight gain, contributing to persistent low-grade inflammation in obesity. We previously showed that adipose tissue Tregs express the adiponectin receptor 1 (AdipoR1); however, the expression in lung Tregs is still unknown. Here, we aimed to determine whether Helios+ and Helios− Treg subsets expressed AdipoR1 in the lungs of obese mice and whether different obesity grades affected the expression upon allergic lung inflammation. For diet-induced obesity (DIO), mice were fed a high-fat diet (HFD) for up to 15 weeks (overweight), 21 weeks (obesity), and 26 weeks (morbid obesity). Overweight and morbidly obese mice were sensitized and challenged with ovalbumin (OVA) to induce allergic lung inflammation. The AdipoR1 expression was reduced significantly in the lung Helios+ and Helios− Tregs of obese mice compared with lean mice. Airway allergic inflammation showed reduced AdipoR1 expression in lung Foxp3+ Tregs. Obesity significantly exacerbated the eosinophilic airway inflammation and reduced the number of Helios+ Tregs in lung and adipose tissue in the obesity-associated asthma model. Upon further weight gain, AdipoR1-expressing Tregs in the lungs of allergic mice were increased, whereas AdipoR1-expressing Tregs in adipose tissue were reduced. These data suggest that obesity-associated adipose tissue inflammation may exacerbate allergic inflammation by downregulating the AdipoR1+ Tregs in the lungs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.