Abstract

Diffuse lung diseases (DLD) are widely distributed in lungs. Because the opacity patterns of DLD on CT images are complex and various, the diagnostic results may be different between doctors depending on their experience and subjective decision on them. In order to solve this problem, performing image analysis using CAD (Computer-Aided Diagnosis) systems attracts attention. To achieve high performance in diagnosis by using these CAD systems, it is necessary to first perform lung region extraction as preprocessing for limiting the target domain. However, by using the existing systems, it is difficult to extract lung regions from all five typical shadow patterns of DLD and normal lungs. In this study, we aimed to extract lung regions from CT slices containing DLD shadows using the U-net for improving the CAD performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.