Abstract

A noncontrast electrocardiography (ECG)-gated, fast-spin-echo magnetic resonance imaging was applied to noninvasively define perfusion impairments in pulmonary embolic and airway obstruction dog models. Two-phase ECG-gated lung images of the minimal lung signal intensity during systole and maximal signal intensity during diastole were acquired by using optimized R-wave triggering delay times in seven dogs anesthetized with pentobarbital sodium before, soon after, and 2 mo after embolization with enbucrilate and in another eight dogs before and after bronchial occlusion with balloon catheters, in combination with a gadolinium diethylenetriaminepentaacetic acid-enhanced dynamic study. An ECG-gated subtraction image between the two-phase lung images provided a uniform but gravity-dependent perfusion map in normal lungs. Furthermore, it defined all 13 variable-size perfusion deficits associated with pulmonary embolism and the dynamically decreased perfusion with time after bronchial occlusion in all the airway obstruction models. These results were consistent with contrast-enhanced pulmonary arterial perfusion phase images. This noncontrast imaging could be equivalent to a contrast-enhanced dynamic study in the definition of regionally impaired pulmonary arterial perfusion in pulmonary embolism and airway obstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.