Abstract

Quantitative thoracic dynamic magnetic resonance imaging (QdMRI), a recently developed technique, provides a potential solution for evaluating treatment effects in thoracic insufficiency syndrome (TIS). In this paper, we demonstrate how lung parenchymal characteristics can be assessed via intensity properties in lung dynamic MRI, a modality suitable for use in pediatric patients. The QdMRI-based approach includes dynamic MR image acquisition, 4D image construction, image pre-processing with non-uniformity correction and intensity standardization, and lung segmentation from the 4D constructed image via a deep learning approach, as well as extraction of image parenchymal intensity properties from the segmented lungs and statistical comparisons among different clinical scenarios. We include 22 dMRI scans from 11 TIS patients (each with both pre-operative and post-operative scans) and 23 dMRI scans from healthy children. Two-sided paired t-testing is performed to compare lung intensity properties between end of expiration (EE) and end of inspiration (EI) within TIS patients (pre-operative and post-operative, separately) and normal children. We also compare the lung intensity properties at EE and EI among pre-operative TIS patients, post-operative TIS patients, and normal children. Experimental results show that lung (T2) intensity at EI is significantly lower than that at EE and lung intensity of post-operative TIS patients is significantly lower than that in pre-operative TIS patients and closer to that of normal children than to that of pre-operative TIS patients, indicating improvement in lung aeration. To our knowledge, this is the first study to provide a quantitative dynamic functional method to analyze lung parenchyma during tidal breathing on dynamic MRI in both healthy children and pediatric patients with TIS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.