Abstract

Computed Tomography (CT) images are read by several lung nodule detection methods. The early step of contrast enhancement is mandatory because of low contrast in original image and further techniques of image processing are with unsatisfactory results. Hence this process are resulted an enhanced image of clearly discrete lung area from background. Image enhancement, feature extraction, and classification are three primary steps. In this work, Rule based Contrast Limited Adaptive Histogram Equalization (FRCLAHE) perform image enhancement step followed by feature extraction and Fuzzy Rule (FR) determines the contrast value. From rules upper contrast value are determined then image is enhancement from CLAHE. In the second, the feature extraction is conducted using the Fuzzy Continuous Wavelet Transform (FCWT) and Gray Level Feature Extraction (GLCM). After this step, the classification is completed using the Entropy Weighted Residual Convolution Neural Network (EWRCNN). Finally, the results are evaluated between the samples, compared to FP reduction with Faster R-CNN alone, the inclusion of rule‐based classification lead to an improvement in detection accuracy for the CAD system. These preliminary results demonstrate the feasibility of the proposed EWRCNN approach to lung nodule detection and FP reduction on CT images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.