Abstract

Lung malignancy is one of the most common causes of death in the world caused by malignant lung nodules which commonly diagnosed radiologically by radiologists. Unfortunately, the continuous flow of medical images in hospitals drives radiologists to prioritize quantity over quality. This work condition allows misinterpretation especially on ambiguous anatomical structures that resemble lung nodule for example enlarged lymph nodes and resulting in decreasing sensitivity and accuracy of malignant lung nodule detections and late diagnosis proven to be fatal to patients. To address the problem, this paper proposed a novel lung nodule detection and classification model using one stage detector called as “I3DR-Net.” The model was formed by combining pre-trained natural images weight of Inflated 3D ConvNet (I3D) backbone with feature pyramid network to multi-scale 3D Thorax Computed tomography scan (CT-scan) dataset. I3DR-Net able to produce remarkable results on lung nodule texture detection task with mAP 49.61% and 22.86%, and area under curve (AUC) 81.84% and 70.36% for public and private dataset. Additionally, I3DR-Net successfully outperform previous state-of-the-art Retina U-Net and U-FRCNN + mean average precision (mAP) by 7.9% and 7.2% (57.71% VS 49.8% VS 50.5%) for malignant nodule detection and classification task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.