Abstract

Natural killer (NK) cells are lymphocytes of the innate immune system that play specialized and niche-specific roles in distinct organs. We investigated the possible function of NK cells in the pathogenesis of congestive heart failure after myocardial infarction. Depletion of NK cells from mice had little effect on cytokine expression (tumor necrosis factor-α, interleukin [IL]-6, and IL-1β), neutrophil and macrophage infiltration into infarcted myocardium, or left ventricular remodeling after myocardial infarction. However, these mice exhibited severe respiratory distress associated with protein-rich, high-permeability alveolar edema accompanied by neutrophil infiltration. In addition, there were 20-fold more NK cells in the mouse lungs than in heart, and these cells were accumulated around the vasculature. CD107a-positive and interferon-γ-positive cell populations were unchanged, whereas IL-10-positive populations increased. Adoptive transfer of NK cells from wild-type mice, but not from IL-10 knockout mice, into the NK cell-depleted mice rescued the respiratory phenotype. IL-1β-mediated dextran leakage from a lung endothelial cell monolayer was also blocked by coculture with NK cells from wild-type mice but not from IL-10 knockout mice. This study is the first to identify a critical role for lung NK cells in protecting lung from the development of cardiogenic pulmonary edema after myocardial infarction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.