Abstract
Increasing evidence indicates that respiratory tract microecological disorders may play a role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Understanding the composition of the respiratory microbiome in COPD and its relevance to respiratory immunity will help develop microbiome-based diagnostic and therapeutic approaches. One hundred longitudinal sputum samples from 35 subjects with acute exacerbation of COPD (AECOPD) were analysed for respiratory bacterial microbiome using 16S ribosomal RNA amplicon sequencing technology, and the sputum supernatant was analysed for 12 cytokines using a Luminex liquid suspension chip. Unsupervised hierarchical clustering was employed to evaluate the existence of distinct microbial clusters. In AECOPD, the respiratory microbial diversity decreased, and the community composition changed significantly. The abundances of Haemophilus, Moraxella, Klebsiella, and Pseudomonas increased significantly. Significant positive correlations between the abundance of Pseudomonas and TNF-α, abundance of Klebsiella and the percentage of eosinophils were observed. Furthermore, COPD can be divided into four clusters based on the respiratory microbiome. AECOPD-related cluster was characterized by the enrichment of Pseudomonas and Haemophilus and a high level of TNF-α. Lactobacillus and Veillonella are enriched in therapy-related phenotypes and may play potential probiotic roles. There are two inflammatory endotypes in the stable state: Gemella is associated with the Th2 inflammatory endotypes, whereas Prevotella is associated with the Th17 inflammatory endotypes. Nevertheless, no differences in clinical manifestations were found between these two endotypes. The sputum microbiome is associated with the disease status of COPD, allowing us to distinguish different inflammatory endotypes. Targeted anti-inflammatory and anti-infective therapies may improve the long-term prognosis of COPD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.