Abstract

Respiratory motion and pulsatile blood flow can generate artifacts in morphological and functional lung imaging. Total acquisition time, and thus the achievable signal to noise ratio, is limited when performing breath-hold and/or electrocardiogram-triggered imaging. To overcome these limitations, imaging during free respiration can be performed using respiratory gating/triggering devices or navigator echoes. However, these techniques provide only poor gating resolution and can induce saturation bands and signal fluctuations into the lung volume. In this work, acquisition schemes for nonphase encoded navigator echoes were implemented into different sequences for morphological and functional lung imaging at 1.5 Tesla (T) and 0.2T. The navigator echoes allow monitoring of respiratory motion and provide an ECG-trigger signal for correction of the heart cycle without influencing the imaged slices. Artifact free images acquired during free respiration using a 3D GE, 2D multislice TSE or multi-Gradient Echo sequence for oxygen-enhanced T(2)(*) quantification are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.