Abstract

BackgroundTumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. A complex relationship exists between TRAIL and the lung where both elevated TRAIL and TRAIL deficiency are associated with lung impairment. In neonatal mice, TRAIL is thought to translate respiratory infections into chronic lung disease but the association between TRAIL and lung function in childhood has not been assessed. AimTo assess the cross-sectional relationship between TRAIL levels and lung function in school-aged children. MethodsThe study cohort consisted of 170 school-aged children attending four schools in Malmö, Sweden. Lung volumes, impulse oscillometry (IOS) and serum TRAIL were measured for all children. Linear regression was used to assess changes in lung function per 1-SD increase in TRAIL. General linear models were used to assess mean lung function by tertiles (T) of TRAIL. ResultsMean age was 9.9 years (±0.6). A 1-SD increase in TRAIL was associated with lower values of FEV1 and FEV1/VC (change in FEV1 (L) and FEV1/VC ratio: −0.047, p-value 0.002, and −0.011, p-value 0.020, respectively) and higher values of lung resistance (change in R5 and R20 (kPa/(L/s)): 0.035, p-value <0.001 and 0.027, p-value 0.004, respectively). These associations remained significant after excluding children with pre-existing lung disease. Higher TRAIL levels were associated with more negative values for X5 in general linear models (Mean X5 (kPa/(L/s)) in T1 (low TRAIL): −0.193 vs T3 (high TRAIL): −0.216, p-value 0.026). ConclusionsHigh TRAIL levels are significantly associated with markers of pulmonary airflow obstruction in school-aged children.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call