Abstract

The aim of the present study was to demonstrate that lung elastance and transpulmonary pressure can be determined without using oesophageal pressure measurements. Studies were performed on 13 anesthetized and sacrificed ex vivo pigs. Tracheal and oesophageal pressures were measured and changes in end-expiratory lung volume (ΔEELV) determined by spirometry as the cumulative inspiratory-expiratory tidal volume difference. Studies were performed with different end-expiratory pressure steps [change in end-expiratory airway pressure (ΔPEEP)], body positions and with abdominal load. A PEEP increase results in a multi-breath build-up of end-expiratory lung volume. End-expiratory oesophageal pressure did not increase further after the first expiration, constituting half of the change in ΔEELV following a PEEP increase, even though end-expiratory volume continued to increase. This resulted in a successive left shift of the chest wall pressure-volume curve. Even at a PEEP of 12 cmH(2) O did the end-expiratory oesophageal (pleural) pressure remain negative. A PEEP increase resulted in a less than expected increase in end-expiratory oesophageal pressure, indicating that the chest wall and abdomen gradually can accommodate changes in lung volume. The rib cage end-expiratory spring-out force stretches the diaphragm and prevents the lung from being compressed by abdominal pressure. The increase in transpulmonary pressure following a PEEP increase was closely related to the increase in PEEP, indicating that lung compliance can be calculated from the ratio of the change in end-expiratory lung volume and the change in PEEP, ΔEELV/ΔPEEP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call