Abstract

The purpose of the chapter is to present a novel method to classify lung diseases from the computed tomography images which assist physicians in the diagnosis of lung diseases. The method is based on a new approach which combines a proposed M2 feature extraction method and a novel hybrid genetic approach with different types of classifiers. The feature extraction methods performed in this work are moment invariants, proposed multiscale filter method and proposed M2 feature extraction method. The essential features which are the results of the feature extraction technique are selected by the novel hybrid genetic algorithm feature selection algorithms. Classification is performed by the support vector machine, multilayer perceptron neural network and Bayes Net classifiers. The result obtained proves that the proposed technique is an efficient and robust method. The performance of the proposed M2 feature extraction with proposed hybrid GA and SVM classifier combination achieves maximum classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.