Abstract

Lung cancer is one of the worldwide leading and fast-growing malignancies. Pemetrexed disodium (PEM, Alimta®), a small hydrophilic drug, is currently used for treating lung cancer patients. However, PEM suffers from issues like fast elimination, low bioavailability, poor tumor cell selectivity and penetration. Here, we report on lung cancer specific CSNIDARAC (CC9) peptide-functionalized reduction-responsive chimaeric polymersomes (CC9-RCPs) for efficient encapsulation and targeted delivery of PEM to H460 human lung cancer cells in vitro and in vivo. PEM-loaded CC9-RCPs (PEM-CC9-RCPs) was obtained from co-self-assembly of poly(ethylene glycol)-b-poly(trimethylene carbonate-co-dithiolane trimethylene carbonate)-b-polyethylenimine (PEG-P(TMC-DTC)-PEI) and CC9-functionalized PEG-P(TMC-DTC) in the presence of PEM followed by self-crosslinking. PEM-CC9-RCPs displayed an optimal CC9 density of 9.0% in targeting H460 cells, a high PEM loading content of 14.2 wt%, a small hydrodynamic size of ca. 60 nm and glutathione-triggered PEM release. MTT assays showed that PEM-CC9-RCPs was 2.6- and 10- fold more potent to H460 cells than the non-targeting PEM-RCPs and free PEM controls, respectively. Interestingly, PEM-CC9-RCPs exhibited 22-fold longer circulation time and 9.1-fold higher accumulation in H460 tumor than clinical formulation Alimta®. Moreover, CC9-RCPs showed obviously better tumor penetration than RCPs. Remarkably, PEM-CC9-RCPs at 12.5 mg PEM equiv./kg effectively suppressed growth of H460 xenografts and significantly prolonged mouse survival time as compared to PEM-RCPs and Alimta® controls. These lung cancer specific and reduction-responsive chimaeric polymersomes provide a unique pemetrexed nanoformulation for targeted lung cancer therapy. Statement of SignificanceMultitargeted antifolate agent pemetrexed (PEM, Alimta®) is currently used for treating lung cancer patients and has low side-effects. However, PEM suffers from issues like fast elimination, low bioavailability, poor tumor cell selectivity and penetration. Scarce work on targeted delivery of PEM has been reported, partly because most conventional nanocarriers show a low and instable loading for hydrophilic, negatively charged drugs like PEM. Herewith, we report on lung cancer specific CSNIDARAC (CC9) peptide-functionalized reduction-responsive chimaeric polymersomes (CC9-RCPs) which showed efficient PEM encapsulation (14.2 wt%, 60 nm) and targeted delivery of PEM to H460 human lung cancer cells, leading to effective suppression of H460 tumor xenografts and significantly prolonged survival rates of mice than Alimta®. To the best of our knowledge, this represents a first report on targeted nanosystems that are capable of efficient loading and targeted delivery of PEM to lung tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.