Abstract

Computed tomography offers many advantages over routine radiographs in screening for lung cancer, and it is clear that low-dose spiral CT screening can more frequently find considerably smaller lung cancers than previous detection tools. Recently, investigators have performed low-dose spiral CT scanning for screening of lung cancer, and have suggested that CT screening can depict lung cancers at smaller sizes and at earlier stages. With technological advances in spiral CT scanners, the detection rate of small noncalcified pulmonary nodules has markedly increased, with higher rates noted with thinner collimation of CT scanning. Unfortunately, the majority of these have proved to be benign, i.e. false positive results. If, even in part, CT features could be found to predict benign nodules without follow-up, the false-positive rate would be reduced, and consequently, the cost, emotional stress, radiation dose, morbidity and mortality associated with interventional procedures would also be reduced. There have been several studies trying to establish reliable CT features for benign lesions in small pulmonary nodules and to determine their outcome. Although these efforts have not completely resolved the issue of false positive results, it is expected that lessons will be learnt on how to manage these small nodules through experience with screening in the near future. Because pulmonary nodules on CT are much more common in Korea than in western countries, the management algorithm for screening CT-detected nodules should be modified according to different circumstances, with consensus among related physicians and radiologists. In addition, to enhance patient care and avoid misunderstanding of inherent limitation of CT screening by the screening subjects, physicians, hospital managers as well as radiologists should provide proper information regarding CT screening to the screenees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.