Abstract

Despite advances in medical technology, lung cancer still has one of the highest mortality rates among all malignancies. Therefore, efforts must be made to understand the precise mechanisms underlying lung cancer development. In this study, we conducted lung and gut microbiome analyses and a comprehensive lipid metabolome analysis of host tissues to assess their correlation. Alternations in the lung microbiome due to lung cancer, such as a significantly decreased abundance of Firmicutes and Deferribacterota, were observed compared to a mock group. However, mice with lung cancer had significantly lower relative abundances of Actinobacteria and Proteobacteria and higher relative abundances of Cyanobacteria and Patescibacteria in the gut microbiome. The activations of retinol, fatty acid metabolism, and linoleic acid metabolism metabolic pathways in the lung and gut microbiomes was inversely correlated. Additionally, changes occurred in lipid metabolites not only in the lungs but also in the blood, small intestine, and colon. Compared to the mock group, mice with lung cancer showed that the levels of adrenic, palmitic, stearic, and oleic (a ω-9 polyunsaturated fatty acid) acids increased in the lungs. Conversely, these metabolites consistently decreased in the blood (serum) and colon. Leukotriene B4 and prostaglandin E2 exacerbate lung cancer, and were upregulated in the lungs of the mice with lung cancer. However, isohumulone, a peroxisome proliferator-activated receptor gamma activator, and resolvin (an ω-3 polyunsaturated fatty acid) both have anti-cancer effects, and were upregulated in the small intestine and colon. Our multi-omics data revealed that shifts in the microbiome and metabolome occur during the development of lung cancer and are of possible clinical importance. These results reveal one of the gut-lung axis mechanisms related to lung cancer and provide insights into potential new targets for lung cancer treatment and prophylaxis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.