Abstract

In the present era, cancer is the leading cause of demise in both men and women worldwide, with low survival rates due to inefficient diagnostic techniques. Recently, researchers have been devising methods to improve prediction performance. In medical image processing, image enhancement can further improve prediction performance. This study aimed to improve lung cancer image quality by utilizing and employing various image enhancement methods, such as image adjustment, gamma correction, contrast stretching, thresholding, and histogram equalization methods. We extracted the gray-level co-occurrence matrix (GLCM) features on enhancement images, and applied and optimized vigorous machine learning classification algorithms, such as the decision tree (DT), naïve Bayes, support vector machine (SVM) with Gaussian, radial base function (RBF), and polynomial. Without the image enhancement method, the highest performance was obtained using SVM, polynomial, and RBF, with accuracy of (99.89%). The image enhancement methods, such as image adjustment, contrast stretching at threshold (0.02, 0.98), and gamma correction at gamma value of 0.9, improved the prediction performance of our analysis on 945 images provided by the Lung Cancer Alliance MRI dataset, which yielded 100% accuracy and 1.00 of AUC using SVM, RBF, and polynomial kernels. The results revealed that the proposed methodology can be very helpful to improve the lung cancer prediction for further diagnosis and prognosis by expert radiologists to decrease the mortality rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.