Abstract
This research aims to explore the potential application of this approach in the production of biosensor chips. The biosensor chip is utilized for the identification and examination of early-stage lung cancer cells. The findings of the optical microscope were corroborated by the field emission scanning electron microscopy, which provided further evidence that the growth of MoS2 is uniform and that there is minimal disruption in the electrode, hence minimizing the likelihood of an open circuit creation. Furthermore, the bilayer structure of the produced MoS2 has been validated through the utilization of Raman spectroscopy. A research investigation was undertaken to measure the photoelectric current generated by three various types of clinical samples containing lung cancer cells, specifically the CL1, NCI-H460, and NCI-H520 cell lines. The findings from the empirical analysis indicate that the coefficient of determination (R-Square) for the linear regression model was approximately 98%. Furthermore, the integration of a double-layer MoS2 film resulted in a significant improvement of 38% in the photocurrent, as observed in the device's performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.