Abstract
The Moon has no strong global magnetic field and only a tenuous atmosphere, so solar wind ions (∼95% H+, 5% He++) directly bombard the lunar surface, sputtering atoms and secondary ions from the exposed grains of the regolith. The secondary ions potentially provide surface composition information through secondary ion mass spectrometry (SIMS), a standard laboratory surface composition analysis technique. In this paper we report the results of laboratory SIMS experiments on lunar soil simulants using solar wind‐like ions. We find that H+ and He++, while not efficient sputterers, nevertheless produce significant fluxes of secondary lunar ions, including Na+, Mg+, Al+, Si+, K+, Ca+, Ti+, Mn+ and Fe+. We predict that lunar surface secondary‐ion fluxes range between ∼10 and 104 ions cm−2 s−1, depending on the species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.