Abstract

Passive seismic techniques have revolutionarised seismology, leading for example to increased resolution in surface wave tomography, to the possibility to monitor changes in the propagation medium, and to many new processing strategies in seismic exploration. Here we review applications of the new techniques to a very particular dataset, namely data from the Apollo 17 lunar network. The special conditions of the lunar noise environment are investigated, illustrating the interplay between the properties of the noise and the ability to reconstruct Green’s functions. With a dispersion analysis of reconstructed Rayleigh waves new information about the shallow shear velocity structure of the Moon are obtained. Passive image interferometry is used to study the effect of temperature changes in the subsurface on the seismic velocities providing direct observation of a dynamic process in the lunar environment. These applications highlight the potential of passive techniques for terrestrial and planetary seismology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.