Abstract

In this paper we review the lunar laser ranging conducted by the laser altimeter (LALT) on board the KAGUYA lunar explorer (2007–2009). Five aspects of LALT measurements are described: (1) General operational history, (2) Laser shot and data statistics, (3) Revisions to LALT topographic data, (4) Variations in laser output energy, and (5) Peak height analysis of laser echo pulses. LALT was able to range to the lunar surface despite some troubles with respect to laser output energy in the middle of the KAGUYA mission. The time series topographic data set was revised (Ver. 2) by incorporating new lunar gravity model based on KAGUYA and other historical lunar satellite’s orbit data, along with other improvements, for example by incorporating the accurate position of the laser collimator on board the KAGUYA; however, more than half of the acquired range data could not be converted properly due to problems with orbit accuracy during the extended phase of the mission. The spherical harmonic coefficients and the basic lunar figure parameters derived from LALT_LGT_TS agree very well with LRO-LOLA and the Chang’E-1 LAM model. It is possible that partial failure to the laser diode was responsible for the gradual degradation of laser power (0.835mJ per million shots) and the rapid decrease that occurred over April 9–14, 2008. The laser power also proved to be extremely sensitive to the temperature of the laser oscillator. The peak height ratio – that is peak height telemetry data divided by calculated ratio – is about 19% on average using the mean slope and albedo data from LALT and Spectral Profiler on KAGUYA space craft, respectively, which suggests the performance of peak height measurement is more than 1/5 for more than 70km altitude, if compared with calculated one. The peak height ratio may be better if we take the effect of small scale topography within a footprint into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.