Abstract
In this paper we consider two relations over stochastic automata, named lumpable bisimulation and exact equivalence, that induce a strong and an exact lumping, respectively, on the underlying Markov chains. We show that an exact equivalence over the states of a non-synchronising automaton is indeed a lumpable bisimulation for the corresponding reversed automaton and then it induces a strong lumping on the time-reversed Markov chain underlying the model. This property allows us to prove that the class of quasi-reversible models is closed under exact equivalence. Quasi-reversibility is a pivotal property to study product-form models. Hence, exact equivalence turns out to be a theoretical tool to prove the product-form of models by showing that they are exactly equivalent to models which are known to be quasi-reversible. Algorithms for computing both lumpable bisimulation and exact equivalence are introduced. Case studies as well as performance tests are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.