Abstract

This paper uses the complex Chebyshev polynomials to develop the lumped-parameter (L-P) model of foundations. The method is an important extension to the approach adopting polynomials to model the dynamic properties of the foundation. Using the complex Chebyshev polynomials can reduce the unexpected wiggling in the foundation modeling, which inevitably occurs if using the simple polynomials of high degree. In the present analysis, the normalized flexibility function of foundation is expressed in terms of complex Chebyshev polynomial fraction. Through the partial-fraction expansion the complex Chebyshev polynomial fraction is decomposed into two sets of basic discrete-element models. The parameters in the models are obtained through the least-square curve-fitting to the available analytical or on-site measurement results. The accuracy and validity of the L-P model is validated through the applications to the surface circular foundations, embedded square foundations and pile group foundations, respectively. It is shown that in general the present model has better accuracy and needs fewer parameters than the existing L-P models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.