Abstract
AbstractA simplified reaction pathway was proposed to describe the kinetic behavior of catalytic wet oxidation of organic mixture. The oxidation reactions were divided and lumped into two groups: (1) the deep or complete oxidation reactions with formation of CO2 and H2O; (2) the partial oxidation reactions with formation of all intermediates in aqueous solution of the industrial wastewater. The concentrations of all reactants in wastewater and those of the intermediates formed during the reaction are also represented by a lumped concentration of total organic carbon (TOC). To test the model, catalytic oxidation of organic pollutants in an effluent from a softwood Kraft pulp mill was investigated in a slurry reactor using a Pd‐Pt/Al2O3 catalyst. Sodium hydroxide was used to adjust the initial pH of wastewater to 7.3 to avoid the problem of metal leaching and excessive corrosion. The lumped kinetic model developed in this study describes well both our experimental data and those reported in literature. The lumped kinetic model proposed in this study can be used for both catalytic and noncatalytic wet oxidation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.