Abstract

Abstract : This paper presents a lumped element model of a piezoelectric-driven synthetic jet actuator. A synthetic jet, also known as a zero net mass-flux device, uses a vibrating diaphragm to generate an oscillatory flow through a small orifice or slot. In lumped element modeling (LEM), the individual components of a synthetic jet are modeled as elements of an equivalent electrical circuit using conjugate power variables. The frequency response function of the circuit is derived to obtain an expression for Q(sub out)/V(sub AC), the volume flow rate per applied voltage. The circuit is analyzed to provide physical insight into the dependence of the device behavior on geometry and material properties. Methods to estimate the model parameters are discussed, and experimental verification is presented. In addition, the model is used to estimate the performance of two prototypical synthetic jets, and the results are compared with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.