Abstract
Of concern is the fractional Kadomtsev–Petviashvili (fKP) equation and its lump solution. As in the classical Kadomtsev–Petviashvili equation, the fKP equation comes in two versions: fKP-I (strong surface tension case) and fKP-II (weak surface tension case). We prove the existence of nontrivial lump solutions for the fKP-I equation in the energy subcritical case α>45\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha >\\frac{4}{5}$$\\end{document} by means of variational methods. It is already known that there exist neither nontrivial lump solutions belonging to the energy space for the fKP-II equation [9] nor for the fKP-I when α≤45\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha \\le \\frac{4}{5}$$\\end{document} [26]. Furthermore, we show that for any α>45\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha >\\frac{4}{5}$$\\end{document} lump solutions for the fKP-I equation are smooth and decay quadratically at infinity. Numerical experiments are performed for the existence of lump solutions and their decay. Moreover, numerically, we observe cross-sectional symmetry of lump solutions for the fKP-I equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.