Abstract

Lattices and liquids are common in physics, engineering, science, nature and life. The Yu-Toda-Sasa-Fukuyama (YTSF) equation describes the elastic quasiplane wave in a lattice or interfacial wave in a two-layer liquid. A (2 + 1)-dimensional reduced YTSF equation is studied in this paper. With symbolic computation, we get the lump solutions more general than those in the existing literature, which orient in all directions of space and time with more parameters. Via the lump solutions, we get the moving path of lump waves, lumpoff solutions and moving path of the lumpoff waves, which describe interactions between one stripe soliton and a lump wave. When the lump solutions produce the one stripe solitons, the lumpoff solutions are constructed. When a pair of stripe solitons cut lump wave, the rogue wave emerges. Time and place for the rogue wave to appear can be obtained from the coordinates of the interaction points between a pair of stripe solitons and the lump wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.