Abstract

In animals, male fertility requires the successful development of motile sperm. During Drosophila melanogaster spermatogenesis, 64 interconnected spermatids descended from a single germline stem cell are resolved into motile sperm in a process termed individualization. Here we identify a putative double-stranded RNA binding protein LUMP that is required for male fertility. lump1 mutants are male-sterile and lack motile sperm due to defects in sperm individualization. We show that one dsRNA binding domains (dsRBD) is essential for LUMP function in male fertility. These findings reveal LUMP is a novel factor required for late stages of male germline differentiation.

Highlights

  • Spermatogenesis is the process where male diploid spermatogonia develop into mature, haploid spermatozoa capable of fertilizing an oocyte [1]

  • To determine if LUMP has a role in RNA interference, we examined the competence of lump1 mutants to suppress RNAi in vivo. whiteRNAi is a genomic-cDNA fusion transgene that forms a double-stranded RNA in vivo [20]

  • We show here that LUMP, a protein predicted to encode two double-stranded RNA binding domains (18, 19), is a previously unknown regulator of the late stages of male germ cell development

Read more

Summary

Introduction

Spermatogenesis is the process where male diploid spermatogonia develop into mature, haploid spermatozoa capable of fertilizing an oocyte [1]. In all animals, this process involves a series of tightly regulated stages that include mitotic proliferation, meiotic division, and extensive cellular remodeling. The first step in spermatogenesis is the division of a self-renewing germline stem cell to produce a spermatogonial cell. This cell subsequently undergoes a series of mitotic divisions to produce spermatocytes that enter meiosis [2]. In a process called individualization, the membrane of the syncytium is remodeled to enclose each sperm

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.