Abstract
We present the results from a multiyear radio campaign of the superluminous supernova (SLSN) SN 2017ens, which yielded the earliest radio detection of an SLSN to date at the age of ∼3.3 yr after explosion. SN 2017ens was not detected at radio frequencies in the first ∼300 days but reached L ν ≈ 1028 erg s−1 cm−2 Hz−1 at ν ∼ 6 GHz, ∼1250 days post explosion. Interpreting the radio observations in the context of synchrotron radiation from the supernova shock interaction with the circumstellar medium (CSM), we infer an effective mass-loss rate at r ∼ 1017 cm from the explosion’s site, for a wind speed of v w = 50–60 km s−1 as measured from optical spectra. These findings are consistent with the spectroscopic metamorphosis of SN 2017ens from hydrogen poor to hydrogen rich ∼190 days after explosion reported by Chen et al. SN 2017ens is thus an addition to the sample of hydrogen-poor massive progenitors that explode shortly after having lost their hydrogen envelope. The inferred circumstellar densities, implying a CSM mass up to ∼0.5 M ☉, and low velocity of the ejection suggest that binary interactions (in the form of common-envelope evolution and subsequent envelope ejection) play a role in shaping the evolution of the stellar progenitors of SLSNe in the ≲500 yr preceding core collapse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.