Abstract

Brain cancer, one of the most lethal diseases, urgently requires the discovery of novel theranostic agents. In this context, molecules based on six‐membered phosphorus heterocycles – phosphaphenalenes – are especially attractive; they possess unique characteristics that allow precise chemical engineering. Herein, we demonstrate that subtle structural modifications of the phosphaphenalene‐based gold(I) complexes lead to modify their electronic distribution, endow them with marked photophysical properties and enhance their efficacy against cancer. In particular, phosphaphenalene‐based gold(I) complexes containing a pyrrole ring show antiproliferative properties in 14 cell lines including glioblastomas, brain metastases, meningiomas, IDH‐mutant gliomas and head and neck cancers, reaching IC50 values as low as 0.73 μM. The bioactivity of this new family of drugs in combination with their photophysical properties thus offer new research possibilities for both the fundamental investigation and treatment of brain cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.