Abstract

A new long-lasting phosphorescence phosphor, Ca 2SnO 4:Sm 3+, which emits orange light upon UV-excitation, has been successfully obtained by a conventional high-temperature solid-state reaction method. Its properties have been characterized and analyzed by utilizing x-ray diffraction, photoluminescence, excited-state decay curve and long-lasting phosphorescence decay curve. After irradiation with 252-nm ultraviolet light, Ca 2SnO 4:Sm 3+ emits intense orange afterglow originating from the 4G 5/2 to 6H J ( J = 5/2,7/2,9/2) transitions. The afterglow decay curve of the Sm 3+-doped Ca 2SnO 4 phosphor indicates both fast and slow decay components. Due to the presence of the latter one, the afterglow can be clearly observed with the naked eyes in the dark for more than 1 h after. The possible mechanism of this long-lasting phosphorescence has also been discussed based on the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.