Abstract

A series of luminescent platinum(II) complexes of tridentate 1,3-bis(N-alkylbenzimidazol-2'-yl)benzene (bzimb) ligands has been synthesized and characterized. One of these platinum(II) complexes has been structurally characterized by X-ray crystallography. Their electrochemical, electronic absorption, and luminescence properties have been investigated. Computational studies have been performed on this class of complexes to elucidate the origin of their photophysical properties. Some of these complexes have been utilized in the fabrication of organic light-emitting diodes (OLEDs) by using either vapor deposition or spin-coating techniques. Chloroplatinum(II)-bzimb complexes that are functionalized at the 5-position of the aryl ring, [Pt(R-bzimb)Cl], not only show tunable emission color but also exhibit high current and external quantum efficiencies in OLEDs. Concentration-dependent dual-emissive behavior was observed in multilayer OLEDs upon the incorporation of pyrenyl ligand into the Pt(bzimb) system. Devices doped with low concentrations of the complexes gave rise to white-light emission, thereby representing a unique class of small-molecule, platinum(II)-based white OLEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call