Abstract
We investigated the possibility of using charged luminescent nanoparticles as nanoprobes for studying the evolution scenarios of surface and internal structure of slowly evaporating free (light-absorbing) microdroplets of suspension. Three concentrations (1, 10 and 50 mg/ml) of luminescent nanoparticles were used. Single microdroplets were kept in a linear electrodynamic quadrupole trap and the luminescence was excited with a CW IR laser with an irradiance of ∼50 W/mm2. Since the microdroplet acted as an optical spherical resonance cavity, the interaction of nanoparticles with light both reflected and modified the internal light field mode structure. Depending on the nanoparticle concentration used, it led, among others, to a very significant increase in modulation depth and narrowing of spherical cavity resonance maxima (morphology dependent resonances – MDRs) observed both in luminescence and scattering, the abrupt changes in the ratio between the luminescence and the scattering and the bi-stability in luminescence signal. The observed phenomena could be attributed to the interaction of optical MDRs with nanoparticle lattice shells forming and changing their structure at the microdroplet surface. In this way, the formation and collapse of such lattices could be detected.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.